Computational efficiency of fractional diffusion using adaptive time step memory
نویسندگان
چکیده
Numerical solutions to fractional differential equations can be extremely computationally intensive due to the effect of non-local derivatives in which all previous time points contribute to the current iteration. In finite difference methods this has been approximated using the ’short memory effect’ where it is assumed that previous events prior to some certain time point are insignificant and thus not calculated. Here we present an adaptive time method for smooth functions that is computationally efficient and results in smaller errors during numerical simulations. Sampled points along the system’s history at progressively longer intervals are assumed to reflect the values of neighboring time points. By including progressively fewer points as a function of time, a temporally ‘weighted’ history is computed that includes contributions from the entire past of the system, resulting in increased accuracy, but with fewer points actually calculated, which ensures computational efficiency.
منابع مشابه
Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملA Fast O(N logN) Finite Difference Method for the One-Dimensional Space-Fractional Diffusion Equation
This paper proposes an approach for the space-fractional diffusion equation in one dimension. Since fractional differential operators are non-local, two main difficulties arise after discretization and solving using Gaussian elimination: how to handle the memory requirement of O(N) for storing the dense or even full matrices that arise from application of numerical methods and how to manage the...
متن کاملA NEW TWO STEP CLASS OF METHODS WITH MEMORY FOR SOLVING NONLINEAR EQUATIONS WITH HIGH EFFICIENCY INDEX
It is attempted to extend a two-step without memory method to it's with memory. Then, a new two-step derivative free class of without memory methods, requiring three function evaluations per step, is suggested by using a convenient weight function for solving nonlinear equations. Eventually, we obtain a new class of methods by employing a self-accelerating parameter calculated in each iterative...
متن کاملStructure of an Adaptive with Memory Method with Efficiency Index 2
The current research develops derivative-free family with memory methods with 100% improvement in the order of convergence. They have three parameters. The parameters are approximated and increase the convergence order from 4 to 6, 7, 7.5 and 8, respectively. Additionally, the new self-accelerating parameters are constructed by a new way. They have the properties of simple structures and they a...
متن کاملOptimized computational Afin image algorithm using combination of update coefficients and wavelet packet conversion
Updating Optimal Coefficients and Selected Observations Affine Projection is an effective way to reduce the computational and power consumption of this algorithm in the application of adaptive filters. On the other hand, the calculation of this algorithm can be reduced by using subbands and applying the concept of filtering the Set-Membership in each subband. Considering these concepts, the fir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1004.5128 شماره
صفحات -
تاریخ انتشار 2010